Bending of DNA by asymmetric charge neutralization: all-atom energy simulations.
نویسندگان
چکیده
DNA dodecamers of the alternating d(CG).d(CG) sequence with six phosphate groups either charge-neutralized or substituted by neutral methylphosphonates across the major or minor groove have been subjected to energy minimization to determine the conformational effect of the asymmetric elimination of phosphate charge. We report bending angles, directions of bending, and detailed structural characteristics such as groove widths and local base-pair parameters. Our principal results are that charge neutralization on one face of the DNA induces significant bending toward the neutralized face, in agreement with theoretical predictions on a simplified model and experimental data on a similar base-pair sequence, and that the DNA conformation averaged over all stereospecific methylphosphonate substitutions is nearly the same as the conformation produced by charge neutralization of the phosphates. Individual isomers, however, cover a wide range of structures, with the magnitude and direction of overall bending sensitive to the precise stereochemical pattern of neutralization. Our simulation does not explicitly contain counterions, and the results therefore suggest that counterions can influence DNA structure by neutralizing the phosphate charge. These data provide new hints into the molecular mechanisms which underlie the deformations of DNA structure induced by the binding of positively charged proteins and other tightly associated cationic species.
منابع مشابه
Effects of phosphate neutralization on the shape of the AP-1 transcription factor binding site in duplex DNA.
Previous electrophoretic experiments suggest that the AP-1 site in duplex DNA bends in response to the pattern of amino acid charges distal to the basic region in bound bZIP proteins. The extent and direction of apparent DNA bending are consistent with the prediction that DNA will collapse locally upon asymmetric phosphate charge neutralization. To prove that asymmetric phosphate neutralization...
متن کاملIs a small number of charge neutralizations sufficient to bend nucleosome core DNA onto its superhelical ramp?
X-ray diffraction structures of the nucleosome core particle along with a variety of experiments are consistent with the idea that an important source of the free energy holding DNA to the superhelical ramp on the histone octamer surface is obtained from a relatively small amount of electrostatic neutralization of the DNA phosphate charge by positively charged histone groups, especially arginin...
متن کاملElectrostatic mechanism for DNA bending by bZIP proteins.
Biology is replete with examples of protein-induced DNA bending, yet the forces responsible for bending have been neither established nor quantified. Mirzabekov and Rich proposed in 1979 that asymmetric neutralization of the anionic phosphodiester backbone by basic histone proteins could provide a thermodynamic driving force for DNA bending in the nucleosome core particle [Mirzabekov, A. D., & ...
متن کاملHydrogen Adsorption on (5,0) and (3,3) Na-decorated BNNTs
The storage capacity of hydrogen on Na-decorated born nitride nanotubes (BNNTs) is investigated by using density functional theory within Quantum Espresso and Gaussian 09. The results obtained predict that a single Na atom tends to occupy above the central region of the hexagonal rings in (5,0) and (3,3) BNNT structures with a binding energy of -2.67 and -4.28 eV/Na-atom respectively. When a si...
متن کاملRole of Asymmetric Phosphate Neutralization in DNA
The PU.1 transcription factor is a member of the Ets family of DNA binding proteins. PU.1 binds to DNA via a loop-helix-loop domain and functions in the differentiation of hematopoietic cells. The structure of a PU.1-DNA complex was recently reported (Kodandapani, R., Pio, F., Ni, C.-Z., Piccialli, G., Klemsz, M., McKercher, S., Maki, R., and Ely, K. (1996) Nature 380, 456–460). The DNA in this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 124 17 شماره
صفحات -
تاریخ انتشار 2002